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Introduction Data
= Sea surface temperature (SST) Is utmost = Target data: JCOPE SST hourly data
important for locating fishing zones = |nput data: ECMWEF reanalysis hourly data (ERAD)
= SST prediction is largely based on numerical * Ground truth: Buoy and drifter data

models, but its output often largely deviate from |* Buoy: KEO buoy (32.3"N, 144.6°E)
ground truth due to many implicit assumptions ~ |* Drifter: JMA drifting ocean data buoys (32.3°N,
= This study attempts SST forecasts using 144.6°E) o et
meteorological parameters as inputs e
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= ANN based meteorological forecasts can be average (1 to 48)
an alternative to physics based models for 1 Hr 8-2834 Eg; 8-23%‘ Eg;
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" Moving average method improves the After residual prediction
prediction accuracy significantly 1 Hr 0.1224 (°C) 0.1067 (°C)
= Residual prediction is an effective technique 8 Hr 0.5034 (*C) 0.5534 ("C)
to further improvise this ANN based 24br 08432(C)  0.8454(C)
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= Drifter predictions were showing low 6l before residual correction| |
accuracy as they were not temporally after residual correction | |V
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